

HLRS-Intel oneAPI HPC Workshop

October 26th, 2022 Edmund Preiss

Objectives

- Get to know / Learn / Understand :
 - The oneAPI programming model
 - Building applications with DPC++/SYCL
 - Fundamentals of OpenMP offloading
 - How to use Intel's oneAPI libraries (oneMLK, ...) and APIs
 - Intel's heterogenous profiling and performance analysis tools
 - A basic understanding on (dynamical) debugging of applications using the oneAPI programming model
 - Intel's Compatibility tool that helps to migrate CUDA to SYCL code.

AGENDA Day 1: Oct 26th, 2022

			Presenter	
09:00	09:10	00:10	Welcome and Introduction to Day 1	Dr Tobias Haas (HLRS), Edmund Preiss (Intel)
09:10	09:30	00:20	oneAPI – Introduction to a new Development Environment - Concept and oneAPI Standardization initiative - Intel's Tools Implementation – Intel oneAPI Toolkits and libs - Transition from Intel Parallel Studio XE to Intel oneAPI toolkits	Edmund Preiss (Intel)
09:30	09:50	00:20	Introduction to the DevCloud - Purpose: Demoing, testing and porting applications - Hardware and Software offerings - How to onboard & how to get an DevCloud account	Klaus-Dieter Oertel (Intel)
09:50	10:00	00:10	Break	
10:00	11:00	01:00	 Direct programming with oneAPI Compilers (Part 1) – with Demos Intro to heterogenous programming model with SYCL 2020 SYCL features and examples "Hello World" Example Device Selection Execution Model 	Igor Vorobtsov (Intel)
11:00	11:15	00:15	Break	
11:15	12:30	01:15	Direct programming with oneAPI Compilers (Part 2) – with Demos o Compilation and Execution Flow o Memory Model; Buffers, Unified Shared Memory (USM) o Performance optimizations with SYCL features	Igor Vorobtsov (Intel)

AGENDA Day 2 : Oct 27th, 2022

			Торіс	Presenter
09:00	10:00	01:00	Intel OpenMP for Offloading – with Demos - Parallelizing heterogenous applications with OpenMP 5.1 - Mixing of OpenMP and SYCL	Alina Shadrina (Intel)
10:00	10:35	00:35	Intel oneAPI libraries (oneMKL) for HPC - with demos - Performance optimized libraries for numerical simulations and other purposes	Gennady Fedorov (Intel)
10:35	10:50	00:15	Break	
10:50	11:20	00:30	Intel Debugging Tools for heterogenous programming (CPU, GPU) - with demos	Alina Shadrina (Intel)
11:20	12:00	00:40	Open Source Compatibility tool for porting purposes(SYCLomatic) - with demo - Migration Cuda based GPU Applications to SYCL	Alina Shadrina (Intel)
12:00	12:30	00:30	Dynamic Debugging with Intel Inspector - with demos - Identifying Memory and Threading Errors (Data Races and Deadlocks)	Heinrich Bockhorst (Intel)
12:30	12:35	00:05	Questions and Answers - Wrap up of the day	Edmund Preiss (Intel)

AGENDA Day 3 : Oct 28th, 2022

			TOPIC	Presenter
09:00	10:10	01:10	Application profiling for heterogenous hardware - Demos - Profiling Tools Interfaces for GPU - Open Source lightweight Tools - Profile heterogenous SYCL/OpenMP Workloads with Intel VTune Profiler - Share experiences/key findings with Gromacs related porting and optimization efforts	Heinrich Bockhorst (Intel)
10:10	10:20	00:10	Break	
10:20	11:30	01:10	Application profiling for heterogenous hardware - Demos - Estimate performance potential gains with Offload Advisor (CPU -> HW Accelerator) - Analyse heterogenous SYCL/OpenMP Workloads with Intel Advisor and Roofline analysis	Klaus-Dieter Oertel (Intel)
11:30	11:40	00:10	Break	
11:40	12:40	01:00	A 3rd Party oneAPI Case Study: GROMACS - A Molecular Dynamics Engine - Heterogenous Design consideration, alternatives and comparisons - Real Scheduling - SYCL - oneAPI and other Implementations - SYCL in GROAMCS 2022	Andrey Alekseenko (KTH, Sweden)
12:40	12:45	00:05	Break	
12:45	13:10	00:25	Programming for Distributed HPC Systems using Intel MPI	Rafael Lago (Intel)
13:10	13:15	00:05	- Questions and Answers - Wrap up	Edmund Preiss (Intel)

Call to Action

- Data Centre Admins
 - Prepare and Update your data center with performance optimized Intel oneAPI Toolkits to serve your users and developers
- Developers
 - Use your knowledge about Intel oneAPI Toolkits for application(s) development
 - Move CUDA code to SYCL
 - Develop applications with new LLVM based Intel C++ (ICX) and Fortran (IFX) Compilers
 - Practice with exercises available on Intel DevCloud

oneAPI -

A new Development Environment

October 26th, 2022 Edmund Preiss

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Results may vary.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

Slide 50 - Texas Advanced Computing Center (TACC) Frontera references

Article: <u>HPCWire: Visualization & Filesystem Use Cases Show Value of Large Memory Fat Notes on Frontera</u>. www.intel.com/content/dam/support/us/en/documents/memory-and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-Memory-Quick-Start-Guide.pdf software.intel.com/content/www/us/en/develop/articles/introduction-to-programming-with-persistent-memory-from-intel.html wreda.github.io/papers/assise-osdi20.pdf

KFBIO

KFBIO m. tuberculosis screening detectron2 model throughput performance on 2nd Intel® Xeon® Gold 6252 processor: NEW: Test 1 (single instance with PyTorch 1.6: Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel® Xeon® Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated Test 2 (24 instances with PyTorch 1.6: Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel Xeon Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated BASELINE: (single instance with PyTorch 1.4): Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel Xeon Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated BASELINE: (single instance with PyTorch 1.4): Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel Xeon Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated BASELINE: (single instance with PyTorch 1.4): Tested by Intel as of 5/22/2020. 2-socket 2nd Gen Intel Xeon Gold 6252 Processor, 24 cores, HT On, Turbo ON, Total Memory 192 GB (12 slots/16 GB/2666 MHz), BIOS: SSE5C620.86B.02.01.0008.031920191559 (ucode: 0x500002c), Ubuntu 18.04.4 LTS, kernel 5.3.0-51-generic, mitigated.

Tangent Studios

Con^figurations for Render Times with Intel® Embree, testing conducted by Tangent Animation Labs. Render farm: 8x Intel® Core[™] processors +hyperthread*2 + 128gig. In-office workstations: Intel® Xeon® processors HP blade c7000 chassis, with HP460 gen8 blades - 2x Intel Xeon E5-2650 V2, Eight Core 2.6GHz-128GB. Software: Blender 2.78 with custom build using Intel® Embree. For more information on Tangent's work with Embree, watch this video: www.youtube.com/watch?time_continue=251&v=_2la4h8q3xs&feature=emb_logo

Recreation of the performance numbers can be recreated using Agent327, Blender and Embree.

Chaos Group - Up to 90% Memory Reduction for Displacement

Testing conducted by Chaos Group with Intel[®] Embree 2020. Software Corona Renderer 5 with Intel Embree. Up to 90% memory reduction calculated using Corona Renderer 5 with regular displacement grids per triangle of 154 bytes versus Corona Renderer 5 with Intel Embree, which has a displacement capability grid of 12 bytes per grid triangle. (12/154 = 7.8% usage or >90% memory reduction.) Recreation of the performance numbers can be accomplished using Corona Renderer 5 and Embree. For more information, visit the Corona Renderer Blog: <u>blog.corona-renderer.com/corona-renderer.5-for-3ds-max-released/</u>

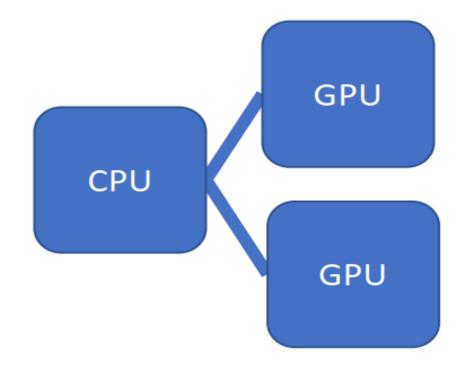
The Addams Family 2 - Gained a 10% to 20%—and sometimes 25%—efficiency in rendering, saving thousands of hours in rendering production time.

Testing Date: Results are based on data conducted by Cinesite 2020-21. 10% to up to 25% rendering efficiency/thousands of hours saved in rendering production time/15 hrs per frame per shot to 12-13 hrs. Cinesite Configuration: 18-core Intel® Xeon® Scalable processors (W-2295) used in render farm, 2nd gen Intel Xeon processor-based workstations (W-2135 and -2195) used. Rendering tools: Gaffer, Arnold, along with optimizations by Intel® Open Image Denoise.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.


© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, Agilex, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

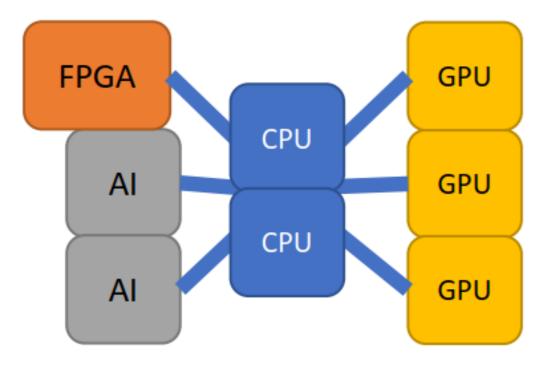
Agenda

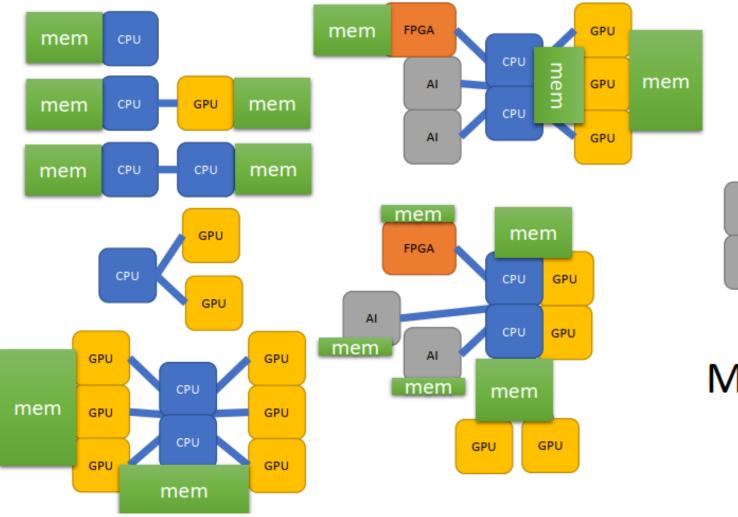
- A Glimps on Future Evolution of the HPC Computer Architecture
- oneAPI Concept and the need for Standardization for heterogenous Programming
 - SYCL and Data Parallel C++
- The Intel® oneAPI Toolkits and Software Development Components
 - Key oneAPI Tool Components
- Examples of oneAPI Enabling & Workload Migration Activities
- Miscellenous / oneAPI Resources and useful links

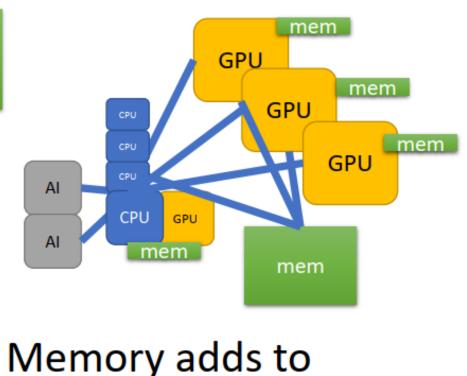
How does a machine look like in a heterogenous world?

Sharing Parallism between CPU and additional Accelerators

Intel's diverse Computer Architecture


Diverse accelerators needed to meet today's performance requirements: 48% of developers target heterogeneous systems¹


Developer Challenges: Multiple Architectures, Vendors, and Programming Models


How does a machine look like in a heterogenous world?

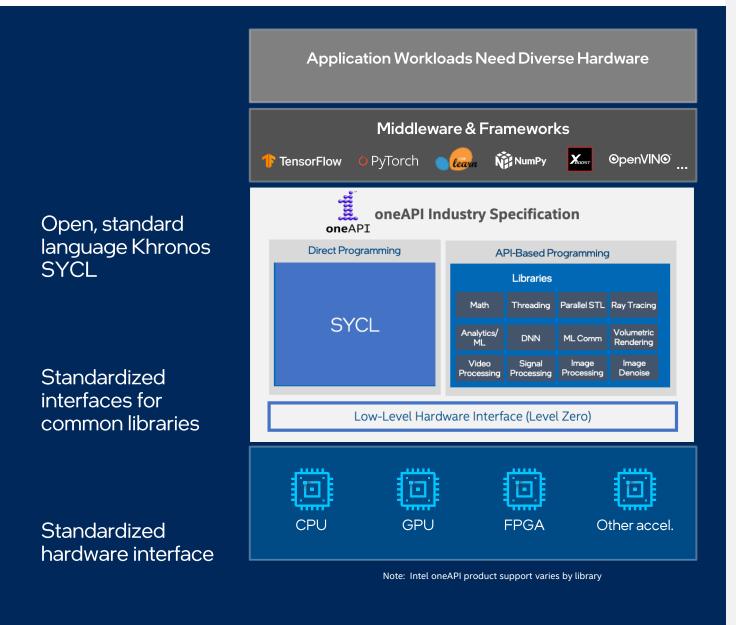
A mix of different Accelerators- All running in parallel

How does a machine look like in a heterogenous world?

the fun. Oh my!

Can we really program XPUs (acceleration)?

- 1. Freedom = Choice of XPUs
- 2. Value = Maintain Performance across XPUs
- 3. Trustworthy = Maintain One Source Code for Future XPUs


oneAPI: One Name, Two Distinct Objectives

- Open industry specification
- Open-source repo and development
- Community driven

oneAPI

oneAPT

- Supports multi-vendor
 implementation
- Visit <u>oneapi.</u>io for more details
- Intel's implementation of oneAPI standards + additional languages and programming models
- Toolkits optimized for Intel CPUs, GPUs, and FPGAs
- Broadly available for download with paid priority support

Data Parallel C++

Standards-based, Most Comprehensive, Cross-architecture Implementation of SYCL

DPC++ = ISO C++ and Khronos SYCL and community extensions

Freedom of Choice: Future-Ready Programming Model

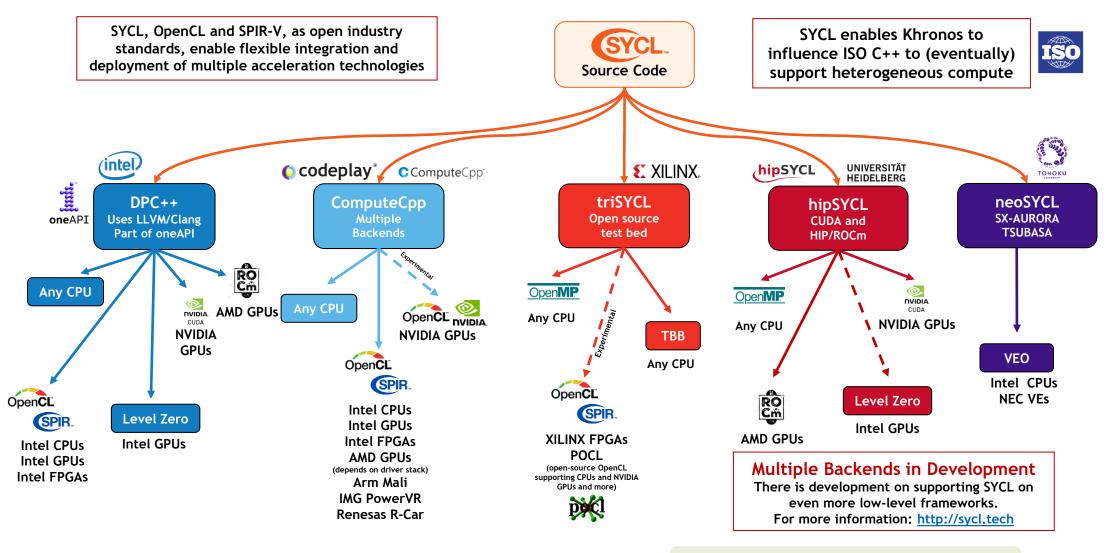
- Allows code reuse across hardware targets
- Permits custom tuning for a specific accelerator
- Open, cross-industry alternative to proprietary language

DPC++ = ISO C++ and Khronos SYCL and community extensions

- Designed for data parallel programming productivity
- Provides full native high-level language performance on par with standard C++ and broad compatibility
- Adds SYCL from the Khronos Group for data parallelism and heterogeneous programming

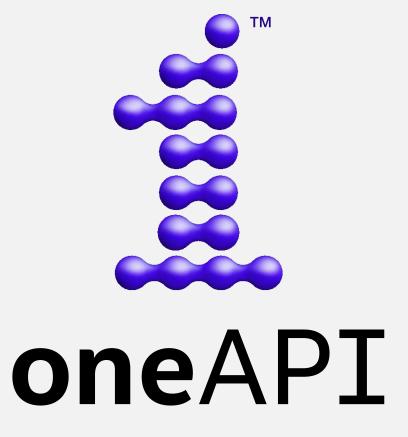
Community Project Drives Language Enhancements

- Provides extensions to simplify data parallel programming
- Continues evolution through open and cooperative development


Direct Programming: SYCL/Data Parallel C++

Community Extensions

Khronos SYCL


ISO C++

SYCL ecosystem is growing

https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know

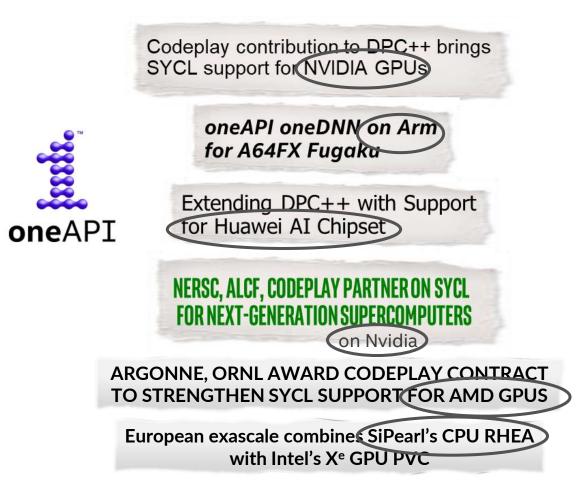
+ Celerity: SYCL on MPI+SYCL

ONEAP Industry Specification

spec.oneapi.com/oneAPI/

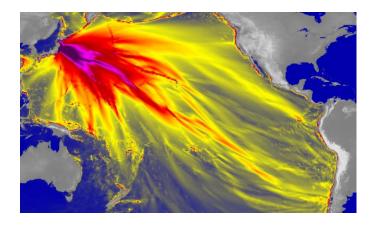
- Notices and Disclaimers
- <u>Contribution Guidelines</u>
- Introduction
- <u>Software Architecture</u>
- Library Interoperability
- oneAPI Elements
- Data Parallel C++ (DPC++)
- oneAPI Data Parallel C++ Library (oneDPL)
- oneAPI Deep Neural Network Library (oneDNN)
- oneAPI Collective Communications Library (oneCCL)
- oneAPI Level Zero (Level Zero)
- oneAPI Data Analytics Library (oneDAL)
- oneAPI Threading Building Blocks (oneTBB)
- oneAPI Video Processing Library (oneVPL)
- oneAPI Math Kernel Library (oneMKL)
- <u>Contributors</u>

oneAPI Ecosystem Support



These organizations support the oneAPI initiative 'concept' for a single, unified programming model for cross-architecture development. It does not indicate any agreement to purchase or use of Intel's products. *Other names and brands may be claimed as the property of others.

intel


oneAPI: Open Accelerator Ecosystem

Freedom of Choice in Hardware Drives Productivity

"DPC++ and oneAPI helped us to develop much faster the accelerators for machine learning algorithms." – Chris Kachris, co-founder, InAccel

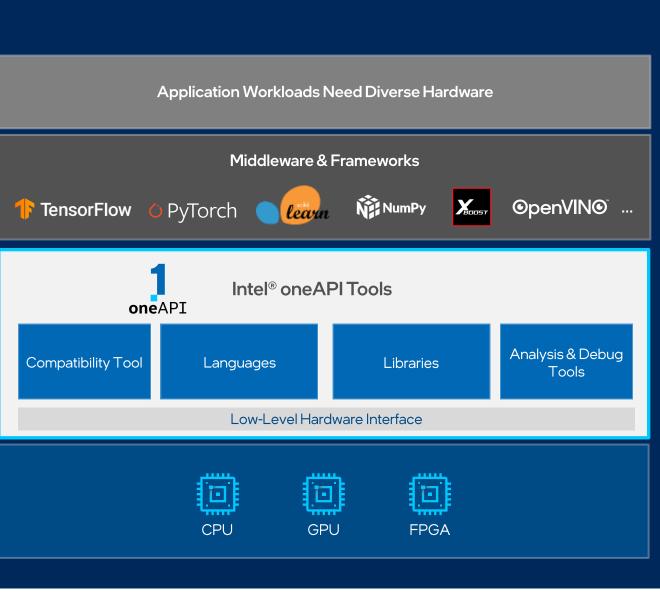
"If you like modern, standard C++ and you want to target GPUs or other accelerators, you will love SYCL!" – Marcel Breyer

Visualization of *easyWave* tsunami simulation application - Courtesy Zuse Institute Berlin (ZIB)

Intel® oneAPI Toolkits and Components

Intel[®] oneAPI

Tools

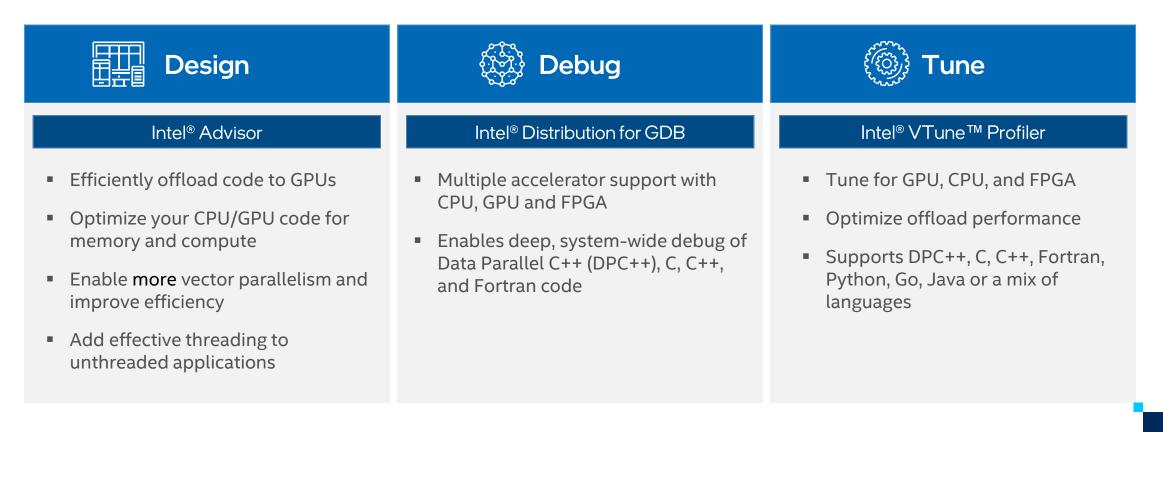

Built on Intel's Rich Heritage of CPU Tools Expanded to XPUs

A complete set of advanced compilers, libraries, and porting, analysis and debugger tools

- Accelerates compute by exploiting cutting-edge hardware features
- Interoperable with existing programming models and code bases (C++, SYCL, Fortran, Python, OpenMP, etc.), developers can be confident that existing applications work seamlessly with oneAPI
- Eases transitions to new systems and accelerators
- Using a single code base frees developers to invest more time on innovation

Available with paid Commercial Support

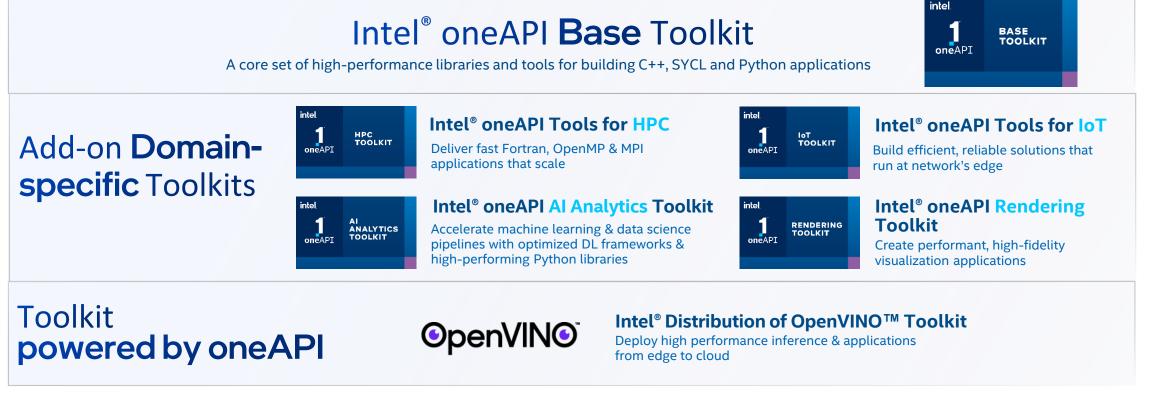
Latest version is 2022.2



Available Now

Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

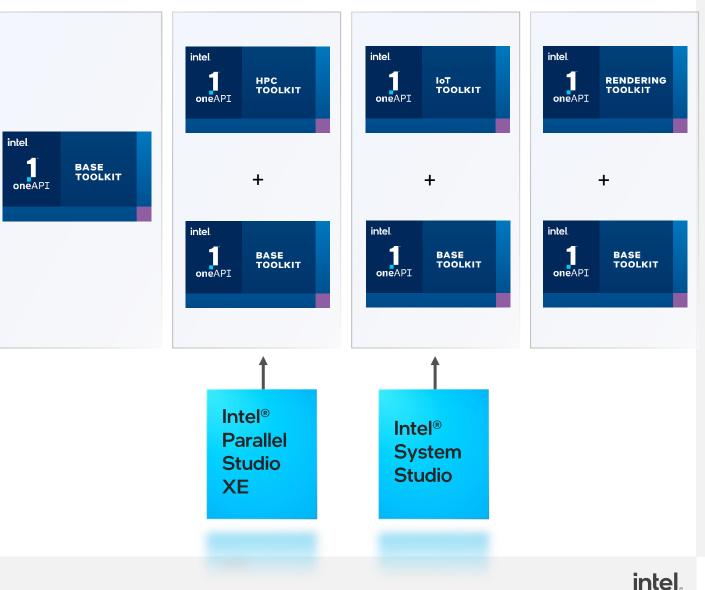
Analysis & Debug Tools Get More from Diverse Hardware



intel

Intel[®] oneAPI Toolkits

A complete set of proven developer tools expanded from CPU to XPU (accelerators)



oneAPT

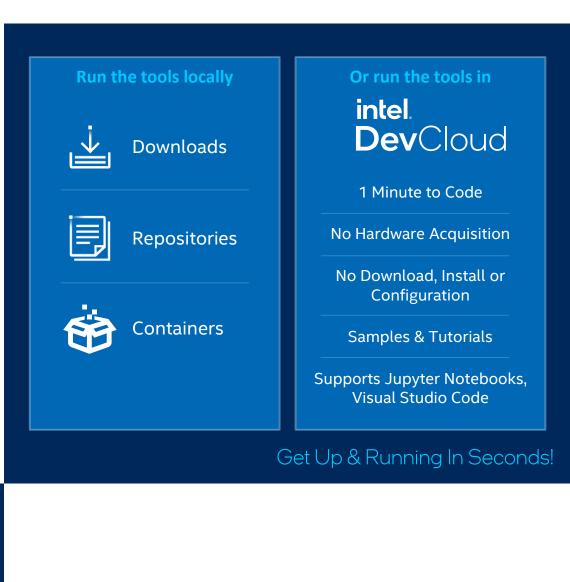
Commercial Toolkits Deliver Priority Support (Paid Support Licenses)

Next Generation of Commercial Intel® Software Development Products

- Worldwide support from Intel technical consulting engineers
- Prior commercial tool suites, Intel[®] Parallel Studio XE and Intel[®] System Studio, transition to oneAPI products

25

oneAPI


Intel[®] oneAPI Toolkits Availability

Get Started Quickly

Code Samples, Quick-start Guides, Webinars, Training

software.intel.com/oneapi

Intel[®] oneAPI Toolkits – Proven Performance

Top Takeaways & Proof Points

- HPC Cross-architecture <u>Argonne National Labs</u> is running Exascale-class applications efficiently on current and future generations of Intel CPUs and GPUs
- HPC Cross-architecture <u>Zuse Institute Berlin (ZIB)</u> ported the tsunami simulation easyWave application from CUDA to Data Parallel C++ delivering performance across multiple architectures from multiple vendors
- HPC & AI <u>CERN uses Intel[®] DL Boost and oneAPI</u> to speed simulations with inference acceleration by nearly 2x without accuracy loss*
- Hyper-real Visualization & AI Using Advanced Ray Tracing <u>Bentley Motors</u> <u>Limited's AI-based car configurator</u> processes 1.7M+ images with up to 10B possible configurations per model*
- IoT <u>Samsung Medison accelerates ultrasound image processing</u> at the edge on multiple Intel[®] architectures for improved accuracy and fast diagnosis
- Major CSPs & Framework <u>endorse oneAPI</u> Microsoft Azure, Google Cloud, TensorFlow
- FPGA Using oneAPI, <u>Bittware</u> had its application running in days vs. what typically would take several weeks using Verilog or VHDL*
- And more... 250+ applications developed with oneAPI tools > view <u>catalog</u>

Driving a New Era of Accelerated Computing

Innovation Leaders using Intel[®] oneAPI Cross-architecture Tools

oneAPI

Video [3:45]

^{*}Detailed slides per customer are noted in the oneAPI Customer Use Cases deck. Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. See <u>Notices & Disclaimers</u> for more details.

GROMACS – Using oneAPI

Intel oneAPI Tools: Empowering GROMACS Cross-Architecture Development @IntelDevTools

,... "The part of oneAPI that is most important to me and my team is that, of course, it's an open standard. We are firm believers in open standards, particularly in the long run, because that means we can rely on it no matter what the vendors do. ...", Erik Lindahl; **Video 2** @sycl.tech

Click on the image to run the first video

oneAPIResources

software.intel.com/oneapi

Get Started

- software.intel.com/oneapi
- Documentation + dev guides
- Code Samples
- Intel[®] DevCloud

oneAPI

Developer Summit 2020

Register Now

oneAPI

Learn

- Training: Webinars & courses
- Intel[®] DevMesh Innovator Projects
- Summits & Workshops: Live & on-demand virtual workshops, community-led sessions
- Training by certified oneAPI experts worldwide for HPC & AI

Ecosystem

- Community Forums
- Intel[®] DevMesh Innovator Projects

 <u>Academic Programs</u>: oneAPI Centers of Excellence: research, enabling code, curriculum, teaching

Industry Initiative

- oneAPI.io
- oneAPI open Industry Specification
- Open-source Implementations

Other useful Content Resources

Vectorization in LLVM and GCC for Intel CPUs and GPUs

Efficient Heterogeneous Parallel Programming Using OpenMP

ArrayFire Interoperability with oneAPI, Libraries, and OpenCL

Click on images to activate links & to subscribe

The product your privacy, Microdit Office prevented automatic Office prevented picture. To show this picture, Developer Products Insights March 2022		
PRODUCTS DEVCLOUD TRAINING	<u>WEBINARS</u>	<u>Youtubi</u>

Forwarded from a friend? Subscribe now →

Featured Content

5 Outstanding Additions in SYCL

SYCL 2020 offers C++ programmers 5 new features to take advantage of accelerators and the potential of open, cross-platform development. Find out what they are and how you benefit.

Read it →

Summary

- oneAPI cross-architecture, one source programming model provides freedom of XPU choice.
 Apply your skills to the next innovation, not to rewriting software for the next hardware platform.
- Intel[®] oneAPI Toolkit products take full advantage of accelerated compute by maximizing performance across Intel CPUs, GPUs, and FPGAs.
- Develop confidently with a proven set of crossarchitecture libraries and advanced tools that interoperate with existing performance programming models.

#